

NASA Earth Science Portfolio

David B. Jarrett

Program Executive, Earth Science Division National Aeronautics and Space Administration

Landsat Science Team Meeting July 7, 2015

Earth Science Overview

- Strategic Objective: To advance knowledge of the Earth as a system to meet the challenges of environmental change and to improve life on our planet.
 - Collecting the data to provide accurate information to inform decision making
 - Emphasize acquisition of data; analyses that combine multiple data sets; and development of efficient information products that yield societal benefit

Major activities:

- Building and operating Earth observing satellite missions, many with international and interagency partners
 - Successfully orbited 3 new Earth Observing missions (GPM, OCO-2 and SMAP) and 2 new ISS instruments (RapidScat and CATS) within 11 months (February 2014 – January 2015)
 - NASA is presently *operating 19 on-orbit research missions*: Landsat 7 (w/USGS), QuikSCAT, Terra, EO-1, Jason 2, GRACE, Aqua, SORCE, Aura, Cloudsat, CALIPSO, Suomi-NPP (w/NOAA), Landsat 8 (LDCM, w/USGS) and TCTE, and the 5 new additions
 - NASA now has responsibility for all civil earth observations for the nation except satellite missions that contribute directly to NOAA's ability to issue weather and space weather forecasts and warnings
 - Sustainable Land Imaging Program (w/USGS; NASA funds flight hardware)
 - Long-term measurement of Altimetry, Solar Irradiance, Ozone Profile, Earth Radiation Budget
- Making high-quality data products available to the broad science community
- Conducting and sponsoring cutting-edge research
 - o *Field campaigns* to complement satellite measurements
 - Analyses of NASA and non-NASA mission data
 - Modeling
- Applied Science to develop and demonstrate applications delivering societal benefit, and building user capacity
- Developing technologies to improve Earth Science observation and information systems capabilities

Earth Science Budget: FY16 Request/FY15 Appropriation

ESD 2015 Senior Review Mission Set

Prime
Extension
Phase F

Venture Class Selections/Solicitations

Mission	Mission Type	Solicitation Release	Proposal Selection	Major Milestone	Total Funding*
EVI-3	Instrument Only	Q2 FY2015	Q2 FY2016	Delivery NLT 2020	\$130M
EVI-4	Instrument Only	Q4 FY2016	Q4 FY2017	Delivery NLT 2021	\$150M
EVI-5	Instrument Only	Q2 FY2018	Q2 FY2019	Delivery NLT 2023	\$182M
EVI-6	Instrument Only	Q4 FY2019	Q4 FY2020	Delivery NLT 2024	\$155M
EVI-7	Instrument Only	Q2 FY2021	Q2 FY2022	Delivery NLT 2025	\$185M
EVM-2	Full Orbital	Q3 FY2015	Q3 FY2016	Launch ~2021	\$165M
EVM-3	Full Orbital	Q3 FY2019	Q3 FY2020	Launch ~2025	\$179M
EVS-2	Suborbital	Q4 FY2013	Q1 FY2015	2016-2020	\$162M
EVS-3	Suborbital	Q4 FY2017	Q4 FY2018	2019-2023	\$176M

Most recent Selection

EVS-1: CARVE, ATTREX, DISCOVER-AQ, AirMOSS, HS-3

EVM-1: CYGNSS (2016 LRD)

EVI-1: TEMPO (2017 Instrument Delivery)

EVI-2: GEDI, ECOSTRESS (2019 Inst. Del.)

EVS-2: AtoM, NAAMS, OMG, ORACLES, ACT-America

^{*} Funding for future EVs is approximate and will be adapted depending on previous selections.

NASA's Earth Science Division

Flight

Applied Sciences

Technology

Sustainable Land Imaging

Program Executive, Earth Science Division
National Aeronautics and Space Administration

Landsat Science Team Meeting July 7, 2015

Chesapeake Bay Landsat 8 surface reflectance mosaic, 2014

"Surface reflectance" is a new USGS Landsat product that corrects for the effects of haze, aerosol, water vapor, and ozone on Landsat data. This processing provides a sharper view of the Earth's surface, as if there were no atmosphere interrupting the view between the satellite and ground.

Landsat History

^aLimited data due to transmitter failure soon after launch. Only 45,172 Landsat 4 Thematic Mapper scenes from 1982–1993 available for science users—~10 scenes/day (vs 725 scenes/day from L8)

^bData coverage limited to Continental US (CONUS) and International Ground Station sites after a transmitter failure in 1987; Multispectral Scanner turned off in August 1995 ^cDegraded Performance due to Scan Line Corrector failure in May 2003

- The Landsat program began as the Earth Resources Technology Satellites Program in 1966, with Landsat 1 (ERTS) launched in July 1972
- NASA built and launched Landsats 1-5 and Landsats 7-8
- Thermal band added for Landsats 3 and beyond
- After launch, Landsat operations are transferred from NASA to USGS, and USGS collects, archives, processes, and distributes
 the image data via the internet at no cost to users
- Landsat 8 began as a data purchase and became known as the Landsat Data Continuity Mission (LDCM)
 - Although the thermal bands were originally not incorporated in the mission, they were added back into the Observatory's capabilities following strong support from a variety of stakeholders

SLI in FY16 President's Budget Submission

→ A multi-component program, with the essential investments in technology and observational innovation to ensure a world class, sustainable, and responsible land imaging program through 2035:

SLI in FY16 President's Budget Submission

- A multi-component program, with the essential investments in technology and observational innovation to ensure a world class, sustainable, and responsible land imaging program through 2035:
 - 1. TIR-FF (Class D Thermal Infrared Free Flyer) to launch ASAP (no later than 2019) and to fly in constellation with a reflective band imager like OLI on L-8
 - Low-cost mitigation against an early loss of the Landsat 8 Class C TIRS, while demonstrating feasibility of constellation flying for land imaging
 - 2. Landsat 9 (Class B upgraded rebuild of Landsat 8) to launch in 2023
 - Low programmatic risk implementation of a proven system with upgrades to bring the whole system to Class B
 - 3. Land Imaging Technology and Systems Innovation
 - Hardware, operations and data management/processing investments to reduce risk in next generation missions
 - 4. Landsat 10
 - Mission definition to be informed by the Technology investments, leading to key mission configuration/architecture decisions by the end of the decade

Landsat Future

Sustainable Land Imaging (SLI) Architecture

Landsat 9

David B. Jarrett

Program Executive, Earth Science Division National Aeronautics and Space Administration

Landsat Science Team Meeting July 7, 2015

Landsat 9 Project Manager Del Jenstrom says:

- Landsat 9 is Underway!!
- Strong support from Administration, Congress, NASA, and USGS
- Strong support from Landsat Science Team and users around the world
- Strong team is being assembled by both NASA and USGS
 - Great mix of Landsat veterans and talented new blood
- Strong relationship between NASA and USGS continuing directly from Landsat 8 launched 2 years ago
- Landsat 9 builds on great performance of Landsat 8

It's as good as it gets!!

Landsat 9 Authorization

Letter from SMD/Earth Science Division to GSFC, dated March 4, 2015

- Establish Landsat 9 Project office at GSFC
- Evaluate ability to streamline formulation
 - Top-level Project documentation signed by September 30, 2015
 - Mission Definition Review and KDP-B targeted for Spring 2016
- Plan for 5 years of mission ops & data analysis post launch
- Launch no later than 2023
 - Near-term work does not preclude an earlier LRD likely 2021
- Measurement capabilities consistent with L8 Level 1 requirements
- Design & implementation capitalizes on existing L8 assets
- Category 1, Risk Class B project both instruments & s/c
- NASA & USGS responsibilities ~same as on L8

Nominal Development Plan

Acquisition Plan

- Instruments
 - Build TIRS-2 in-house at GSFC
 - Sole source OLI-2 to BATC
- Compete spacecraft w/ observatory I&T
- Compete launch vehicle in coordination with NASA/LSP
- USGS develops MOC and data processing/archiving system

Development Plan

- Begin instrument work immediately
- Begin spacecraft and LV work as soon as possible/necessary
 - Near-term work does not preclude earlier LRD
- USGS begins ground system work immediately

